NWAFC PROCESSED REPORT 79-13

SUMMARY REPORT
Workshop on Ecosystem Models for Fisheries Assessment and Management
16 April to 11 May 1979
Northwest and Alaska Fisheries Center Seattle, Washington

July 1979

NOTICE

This document is being made available in .PDF format for the convenience of users; however, the accuracy and correctness of the document can only be certified as was presented in the original hard copy format.

Inaccuracies in the OCR scanning process may influence text searches of the .PDF file. Light or faded ink in the original document may also affect the quality of the scanned document.

Summary Report
WORKSHOP ON ECOSYSTEM MODELS FOR
FISHERIES ASSESSMENT AND MANAGEMENT
16 April to 11 May 1979
Northwest and Alaska Fisheries Center
Seattle, Washington

July 1979
U.S. Department of Commerce

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northwest and Alaska Fisheries Center
2725 Montlake Boulevard East
Seattle, Washington 98112

CONTENTS

1. Introduction and general discussions.
2. Discussions of basic processes in the ecosystem models

2.1 Growth

2.2 Trophodynamics
2.3 Distribution of biomass with age
2.4 Effects of fishery
2.5 Mortalities
3. Discussion of fully model dependent subjects.
3.1 Types of grids and initial analysis
3.2 Data inputs
3.3 Migrations
3.4 Reproduction, recruitment
4. Plankton and benthos in fisheries ecosystems.
5. Verification and validation.

Appendix 1. Ursin, E. A multispecies fish stock assessment model (including Andersen-Ursin skeleton mode1).

Appendix 2. Daan, N. and T. Laevastu. Mathematical background of Laevastu-Favorite Bulk Biomass Model in "skeleton" form.

Appendix 3. Laevastu, T. Skeleton Bulk Biomass mode1 (mode1 documentation).

1. INTRODUCTION AND GENERAL DISCUSSIONS

The Ecosystem Models Workshop was held in the Northwest and Alaska Fisheries Center in Seattle from 16 April to 11 May 1979. The main purposes and objectives of this workshop were:

1) To review the present state of the art of multispecies and ecosystem models for fisheries assessment and management.
2) To compare two existing models (Andersen and Ursin model - The Danish model, and the Laevastu and Favorite model - the NWAFC model).
3) To review all subject matter pertaining to fisheries ecosystem simulation and to suggest which processes are of primary importance to be included in the simulation models.

The main participants of the workshop (called collectively hereafter "the workshop") were: E. Ursin (Danish Fisheries and Marine Research), N. Daan (Netherlands Institute for Fisheries Investigation), T. Laevastu and P. Livingston (NWAFC, Seattle), E. Henderson and E. Cohen (NEFC, Woods Hole), and J. Burdine (Marine Mammals Laboratory, Seattle). In addition, other scientists from NWAFC (F. Favorite and others) participated in the sessions of various subject matters. It was recognized by the workshop that the conventional single species population dynamics models are no longer adequate for solving many present problems of stock assessment and fisheries management. The single species models lack the interspecies interactions (mainly through food dependence). On the other hand, the multispecies and ecosystem models take the trophodynamics quantitatively into consideration. Furthermore, it was recognized that the terms models and simulations, as well as multispecies mode1s and simulation models, can be considered as synonyms.

It was also suggested that multispecies models should not entirely replace the single species models. The latter often provide input data for the former. If a given problem can be solved with single species consideration, then the single species model should be used, provided that proper evaluation of adequacy is made and the limitations recorded.

The workshop noticed that the number of ecosystem models is increasing and that it is difficult to follow all of them in detail. It was considered preferable to document the essentials of the models in somewhat simplified form to enhance the review and evaluation. Therefore, the skeleton forms of both models (the Danish and the NWAFC Bulk Biomass model (BBM)) were prepared and given in the appendices of this report.

The major part of the workshop time was spent in detailed scrutiny of the BBM model and its scientific background, suggesting possible modifications for future testing. The DYNUMES and Danish models were dealt with only in a comparative manner, in hopes of studying their details in future workshops

As trophodynamics play a central fole in the ecosystem models, recommendations for proper fish food studies were made. Furthermore, different numerical experiments with size dependent feeding were recommended.

The ecosystem models require a great variety of data, some of which are scarce in the literature. Furthermore, emphasis is often put on some data which were not considered essential in past fisheries research. It was, therefore, suggested that the reorientation of fisheries data needs could be discussed in a larger meeting of fisheries scientists in the future.

The workshop considered a follow up of the present workshop essential, both for furthering the science and technology of the subject matter, and for promoting the application of the models in research guidance and in fisheries management. Dr. Daan promised to explore the possibilities of holding the next ecosystem models workshop in the Netherlands.
2. DISCUSSIONS OF BASIC PROCESSES IN THE ECOSYSTEM MODELS

The energy based ecosystem models were considered not fully adequate as the necessary conversions to numbers and/or biomass is quite uncertain due to lack of proper data on caloric values. The number based models (e.g. the Danish model) follow to a large extent the conventional single species approaches and the outputs are easy to understand with conventional thinking. Furthermore, these models usually have a strictly defined mathematical background. On the other hand, the biomass based models (e.g. the NWAFC models) require some rethinking in different terms than customary in the past (e.g. the presentation of recruitment). They are mathematically less rigorous, requiring local simulations and considerable personal interactions, and are difficult to describe in mathematical terms (except in discrete, time stepping finite difference forms). The multi-habitat, multi-layer approach is essential in both types of models (the Danish and NWAFC models).

A11 existing ecosystem models require simplifications in presentation (description) to make them understandable and acceptable to a wider circle of users.

2.1 Growth

Growth rates are computed from empirical weight-age data. However, these data on juveniles, specially in the first and second years of life, are scarce and/or deficient in all species. Considerable year-to-year variations in growth rate could occur. Thus it is desirable to obtain better empirical data on this subject.

In biomass based models the growth coefficient of the biomass of any species is dependent on growth rate at any given age interval and the relative abundance (fraction) of biomass in this age interval. Thus the growth coefficient should vary (with trophic and environmental effects) also with the variation of recruitment and fishery
(i.e. with factors affecting the age distribution of biomass). Thus it is desirable to account for the age distribution change either by dividing the species into several age groups or by computing the age distribution with another model (or subroutine). This problem is of interest to some management approaches due to changes resulting from rejuvenation of populations (re. Dementjeva) due to fishery.

The empirical knowledge of distribution of numbers (and/or biomass) of fish in prefishery juveniles is lacking in all species. This applies also to age variable mortality rates at these younger ages. Thus any studies which provide knowledge in these areas (i.e. changes of numbers and mortalities in prefishery juveniles) are most desirable.

The effects of water temperature on growth are treated in the models according to best available knowledge. However, there is very little empirical data available on acclimatization of different species to different temperature ranges.

The effects of the availability of food and related partial starvation on growth is treated in a manner consistent with available knowledge. However, no special studies (using model outputs) have been conducted on this matter. It was suggested that this matter be discussed further in the next workshop.

In some species the seasonal changes of growth are not fully in phase with temperature and/or availability of food. In these cases it was suggested to simulate the known seasonal variation with a harmonic formula (see Appendices 2 and 3).

2.2 Trophodynamics

Although both models can partition the food requirement (and utilization) between growth and maintenance, it was considered that additional data (and research) would be desirable on the seasonal change of feeding rates, specially in pelagic species.

Although the temporal dependence of feeding rate (and food uptake) on food density is simulated in the Danish and NWAFC's BBM models, the simulation of the spatial food density dependence is possible only in gridded models such as the DYNUMES model.

The size-dependent feeding must be used in all realistic fishery-oriented ecosystem simulation models. It was suggested that attempts be made to introduce a vulnerability index into biomass based models instead of food preference indices (via mean food composition).

The fundamental differences between single species models and ecosystem models is that predation (and trophodynamics in general) is included in the latter, thus quantitatively connecting the dynamics of all species in the ecosystem. Trophodynamics forms a basis for modern fish stock assessment methods. However, good quantitative fish food and feeding habit studies are rare (example of an excellent study is the cod study by Daan). It was recommended that good quantitative fish food studies be promoted in all areas.

2.3 Distribution of biomass with age

Detailed, direct knowledge (and evidence) of the distribution of numbers (and biomasses) of prefishery juveniles is lacking in all species. The models with age-constant mortality coefficients were considered unrealistic for computation of the number distributions of juveniles. It was recommended that any direct and indirect means be explored for furthering knowledge on the number and biomass distribution in prefishery juveniles and on the age-dependent mortalities.

Changes in relative age and size composition occur in all species, from a variety of causes (e.g. variation in recruitment, fishery, etc.) which in return induce other changes in the ecosystem and its dynamics (e.g. with reference to size-dependent feeding). It is imperative that the models compute the biomass
and/or number distribution as caused by a variety of known factors. It was suggested that this subject (together with results from prospective studies of the dynamics and consequences of time dependent changes in age composition of species biomasses) be discussed more fully during the next workshop.

The effects of different spatial distribution of juveniles and adults on e.g. predation can be simulated only in gridded models such as DYNUMES.

The turnover rates of most fish biomasses can be computed with BBM (and other) models. However, more data (empirical or theoretical) on annual turnover rates of zooplankton and benthos would be highly desirable from ecologically different locations (regions). These latter data are especially needed for more accurate determination of carrying capacities of different regions.

2.4 Effects of fishery

The fishery causes changes in age composition of the target species. These changes are computed directly in the Danish model where all species are divided into a number of age groups. In NWAFC models only one or two species at a time are at present divided into different age groups. In non-divided species, the changes in age composition must be depicted in a number of parameters, notably in biomass growth rate. These age (size) composition dependent changes must also be depicted in trophodynamics (re. size dependent feeding, composition of food, etc.).

In the species where schooling is pronounced, the fishery should be computed as constant catch in time (i.e. the fishing mortality coefficient must be adjusted each time step). This approach could also be used to demonstrate quantitatively the manner of "crash" (collapse) of pelagic stocks.

It was considered desirable to investigate numerically the effects of seasonally varying fishery on the biomass of the target species. During the workshop it was demonstrated numerically that the annual difference in catches is not proportional to the difference in the change of biomass of the species, but the latter can be
many times greater (e.g. $400 \mathrm{~kg} / \mathrm{km}^{2}$ annual increase of yield might result in $1200 \mathrm{~kg} / \mathrm{km}^{2}$ decrease of biomass).

Spawning stress mortality was first introduced into Danish model and is now used in the NWAFC models. There is a nonlinear interaction between fishing mortality-constant over fully exploited year classes, and spawning stress mortality-increasing ca 10% per year. Thus it was felt that it would be desirable to compute numerical examples of the interactions of fishery and spawning stress mortalities for different species with different number of year classes in exploitable stock.

It was furthermore felt that the present and future data from commercial catch sampling (e.g. length-age-frequency data) might not be fully comparable with data from earlier years when fishery was less regulated than at present.

2.5 Mortalities

Several recent investigations show an age dependent spawning stress mortality, without providing absolute proof of it. This age dependent mortality may also be thought as being caused by decreased vulnerability to gear in larger fish and/or emigration of larger (older) fish into deeper water. It was found desirable that more basic research be conducted on spawning stress mortality (and/or age dependent senescent mortality) in a variety of species; specially observations on spawning grounds would be especially desirable.

Mean (natural) mortality coefficient was considered unrealistic for any species. The greatest component of the "natural mortality" in juveniles is the predation mortality. Both models compute it at least partially as age (size) dependent predation mortality (re. size dependent predation). However, it was felt that there is a further need to study and describe age dependent mortality in all species by various means (drafts of two related studies were available to the workshop).

Exceptionally cold winters are known to cause additional mortality in many species. Furthermore, severe starvation might be expected to cause additional mortality in fish. It was found desirable to summarize all quantitative observations in these subjects.

The predation mortality must be quantitatively limited (density dependent) when the density of prey becomes low. In the Danish model it is limited indirectly via vulnerability coefficient. In the NWAFC biomass based model it is limited by two factors: a) a prescribed monthly maximum percent of biomass allowed to be consumed, and b) with a predation level factor ($\bar{B} / B_{t}-$ equilibrium biomass/actual biomass).

The effects of spatially and seasonally changing predator-prey distributions on the predation rates can be included (and studied) only in models with spatial resolution (such as DYNUMES).

It was found desirable to summarize all available quantitative observations on disease mortalities. Furthermore, the possible range of errors in mortality coefficients should be studied (and reported on in the next workshop).
3. DISCUSSIONS OF FULLY MODEL DEPENDENT SUBJECTS
3.1 Types of grids and initial analysis

The gridded models such as DYNUMES have several advantages, allowing the presentation of space resolution, migrations, differences in space and time of predator-prey relations, etc. On the other hand, these gridded models are expensive in set up and in computer core and time requirements. The "box models" (e.g. Danish model and NWAFC's BBM and PROBUB models) are sufficient for many fisheries research and management problems. The computations in these models are done either in mass and/or number units per unit area or per total box area.

Whereas the Danish model takes initial input from various available assessments, the DYNUMES model needs the initial analysis of input biomasses. This initial analysis consists of computing a unique solution to the biomass equations with predetermined food composition and food requirements using BBM or PROBUB models. With this approach the mean carrying capacity (and/or equilibrium biomasses) can be computed.

The ecosystem models require that all the components of its biota be presented quantitatively in the simulation. This presentation is not always possible by species, but by groups of species. Feeding habits and food composition are recommended as the main criteria for grouping of species.

Use can be made of quantitative exploratory fishery survey data in biomass based models for initial input (spatial analysis). However, these survey data must be first converted to total biomass. For this conversion vulnerability (to gear) coefficients and availability coefficients are needed.

It was suggested that the types of outputs taken from the models be presented in the form similar to conventional fisheries data in order to make comparison easier. Obviously there is no limitation of taking (outputting) of any specific data pertinent to special studies.

3.2 Data inputs

The input data for the Danish model and for the NWAFC models are considerably different. These differences are partly dependent on the type of model, but initially (in the model designing stage) caused by the differences in availability of data. This pertains also to derived (indirect) data, such as various coefficients and rates. Due to differences in the ecosystems per se, different geographic locations, and especially due to the nature (emphasis) and intensity of past fisheries research, the ecosystems simulations must often be designed differently depending on available data. However, it was felt that wherever possible some conversion factors and methods should be derived for making general fisheries data quantitatively comparable.

Ecosystem models require more and different data than conventional single species models. Thus there will be a reorientation of fisheries data collection in the future, when ecosystem models come more into use. Thus the fisheries data collection reorientation should be discussed in larger groups with diverse fisheries research backgrounds.

The use of environmental data (and anomalies) in the ecosystem model was discussed and emphasized in the areas where seasonal anomalies can be large (e.g. in the Bering Sea).

3.3 Migrations

The migrations in box models can be described as "boundary values" - i.e. the fluxes through the boundaries. Growths and mortalities outside the boxes cannot be computed. The migrations are treated in detail in gridded models, provided some prior information on migrations is available. Furthermore, the dispersal, aggegation, and passive transport by currents is computed in gridded models such as DYNUMES.

The workshop considered that it would be desirable to develop special migration submodels which can be fitted to existing ecosystem models. It was suggested that the problems of migration be discussed in greater detail in another workshop.

3.4 Reproduction, recruitment

The accuracy of the prognoses of the fisheries resources is largely dependent on recruitment. However, the processes controlling the recruitment are quantitatively poorly known. Considerable time and effort of the workshop was spent in discussing recruitment problems and the modeling of this process.

In the Danish number based model the spawning products are released in a given month of spawning. The number of laryae surviving is controlled by an empirical formulation which allows lower survival at high number of spawners and high survival at low number of spawners.

In the present NWAFC biomass based model the recruitment is a function of biomass size and of the growth coefficient of the biomass. If a given species under special study is divided into a number of age groups, then the recruitment is a function of the biomass of the older (sexually mature) age group. Although discrete spawning season can be simulated in biomass based models, it has been found convenient to consider recruitment as a continuous process, as the spawning of most species in the Bering Sea covers a period of three to five months. Furthermore, the eggs when released are considered as a part of the zooplankton and they (and the larvae) are consumed during the first few months at the same rate as zooplankton. The early recruitment to the biomass of the species is assumed to occur at the age of four to six months. Thereafter the recruitment is largely controlled by predation by other ecosystem components as well. The recruitment level is controlled by modifying growth coefficient, making it inversely proportional to biomass level ($\mathrm{Bt} / \overline{\mathrm{B}}^{--}$actual biomass/equilibrium biomass; and $\sqrt{B t / \bar{B})}$.

Several suggestions were made for experimentation with recruitment modeling, which included the separation of each biomass into two age groups.

It was generally concluded that the recruitment (in all prefishery age levels) remains one of the important problems to be solved in fisheries research. It was also felt that the year class strengths might be determined by predation on larvae and juveniles rather than by early survival of larvae.

4. PLANKTON AND BENTHOS IN FISHERIES ECOSYSTEMS

Several ecosystem models deal exclusively with plankton production. The attempts to compute fishery production exclusively from plankton production have, however, not been successful in the past, mainly because the pathways of
plankton utilization are diverse and greatly variable in space and time. One of the main tasks of the fisheries oriented ecosystem models is to determine quantitatively the species composition of the ecosystem and the resulting utilization of available food resources. Consequently the fisheries oriented ecosystem models also need as input the standing crops and/or production of plankton and benthos.

The standing crop data of zooplankton is simulated on the basis of available empirical data. The consumption of zooplankton is computed in detail in the ecosystem models. However, there is in general a lack of data on turnover rates of zooplankton, which is needed for determination of carrying capacity.

Furthermore, the workshop conc1uded that there is a lack of quantitative data on the predators in the zooplankton, such as jellyfish, ctenophores, and chaetognaths which might be important competitors and even predators on small fish larvae. Furthernore, little is known on squids as predators of zooplankton and fish larvae.

Standing crop of benthos is usually simulated in ecosystem models as a function of depth and type of bottom. The knowledge on the turnover rate (re production) of benthos is also poor.

5. VERIFICATION AND VALIDATION

The sensitivity analysis, verification, and validation of large ecosystem models pose many problems which have not been attacked by conventional means in the past. First, it was suggested that the ecosystem models be described in the manner and form in which they would be understandable to a wider group of fellow scientists. This would enhance the verification of the models. Beginning of this task is made with the skeleton models given in the appendices of this report. Detailed descriptions and documentations of the computerized models should be available upon request.

The error limits of the outputs can be estimated, in some cases, by considering the possible error limits in the input data and the formulas used in the model where these inputs are used as parameters. This will also lead to verification of the results of individual processes.

It was considered desirable to estimate the accuracy and confidence limits of various outputs by different means. Furthermore, special numerical studies could be made of some new approaches used in the models, such as dampening of errors in recruitment.

It was specially recommended that some of the model output be tailored to produce data which can be validated with conventional fisheries data. Obviously new research approaches must also be designed to validate several aspects of ecosystem processes and results thereof.

Appendix I

\author{
A Multiscecies Figh Stock Assessment Model

 By Erik Ursin
 ```
The Danish Institute for Fishery and Narine Research
 Charlottenlund slot
 DK-2920 charlettenlund
 Dentark

```
}
```

Abstract. The basic framework of the Danfsh multispecies model
(the North sea model) is descrited in mathematical terms
with emphasis on why these terms were chosen. The full model
(Ardersen and Ursing Meddr Danm. Fisk.- og Havunders.. NS,
7: 319-435) is complicated and difficult te take in during a
single lecture. when computerized, the basic structure
described in the lecture tehaves like a 'generalized' sea
with four species tehaving tco rigidly te te identified with
any carticular animal species.

```

Introouction


The mocel is prirarily a multispecies extension to the Beverton and Helt (1957) fishery mocel. When complete it also descrites primary froduction as a tunction cf sunlight and nutrient concentration in the water. It keefs aceount of nutrient transter from water to plant to aniral; from one aniral to another: from aniral to ceadorganic matter; from animal anc dead crganic matter back intc increanic nutrient in the water. It also traces bicmass transfer in such a way that corsumption equals predation.

The mocel can be implerented as alcseobox or with an exchange of ratter with the surfounding ervircniert (the ocean, rivers). It can be set up as a simele tox cr as a set of two or more boxes bith migrations across bcx bcreers.

The redel is basically analytical. tut some erfirical relations had to be introduced te cover creblens tor which no analytical soluticn can be ctfered. The acvantace of the analytical mocel abcue the purely encirical che is that you can rake use of not ouantifiable information whereas the empirical model utilizes one carticular set cf cata. for instance, if all you kncw about the feod of herring is that it ras been ascertained in an extensive investigation that \(5 C\) CCt cf adult herring's food is crustacean plankton beighing less than 2 mg , then you can ajust the affrcpriate carameter values of an analytical model in such a way that the herring of the rocel feed in accerdance with this inforiation. An awkmarceffect of this is that the number of degres of freedor for parareter estiration is not defined. The parareters can be countede tut the nurter of ctservatiors is a risty quantity. Ycu have in fact ircluded your own indefinatle 'fund cf knowledge of rarine lite'.

An infressive exarole of the curely empirical approach is the parer ty lett and Kohler (1976) on herping ara mackerel interoction in the Gulf of St. Lanrence. Such ar aporoach is gooa when the data are good. Most data sets cn rarire tish stocks are defective tecause of excessive variance and a riltitude of bias.

The entire model (Andersen and Ursin. 1977) with all its details and ertrciderings is quite comelicatec. However, the first oraft of the medel which mas distributed orivately ir 1971 is simple and refained the basic frarework of the final redel. It was used ry Eeyer and Lassen (1975) arc Lasser (1978) to descrite in general terms the tiological eftects cf synthetic pollutants in the Nerth sea and is referred to by Andersen ard ursin (1977, caragraph 5) as 'a reduced recel fer rafid corfutation'.

This skeleton rodel car be corrarec tc a picture of a man draur with such told and simple strokes that anyone can see that it is a riar, but not which ore. This is a cicture cf a sea with some scecies in it. Notocy knces mrict sea cr urich scecies. It was not cutishec in 1971 tecause the authors tearec adcing to the cile cfecosystem rocels which rever reach the stade ot apolic-
```

aticn to practical frotlems.
Nodel Structure

```

```

Species Interaction and Beverten and relt

We shall first sfecify the ercbler ty writing the three basic
differential equations of the eeverton and Holt singlespecies
assessment model ufon which rost acvice on fishery regulation in
Eurcee is based tcday. These equaticns describe mertality,
gronth and yielde respectively.
Let t ke time, the bedy weight, N the number cf fish in one
year class, Y the accumulating yield, and F and r the fishing
end natural mortality coefficients:-
dN/Ct:= - (F + M) N(t)(1)dwlot: $=H W(t)^{2 / 3}-k W(t)$(2)$d Y / C t=F N(t) \quad u(t)$(3)
F. M, H and k (and the powers cf weicht) are parameters. No * and y are variatles. They are functicns of tine. We want to cut species indices cnall these quantities and to estatlish soecies interaction by intreducing a functioral relationship tetween the rortality and food corsumption because corsumed anitals ano clants die. The actual farameters involved are the natural mortality carameter M. and the ccefficient H of the positive term cf the growth equation. For H to te positive there rust be something to consure. H must therefore be develoded as a functicn of food corsumption. anc so rust M.
To achieve the geal we introduce a fourth differential equation descriting the fooc consumpticn of an individual fish. Let R be the accurulating focd consured:-
dR/Ot: $=f(t) h w(t)^{2 / 3} \quad 0 \ll f:<=1$

The similarity ith the first term of the grenth equation is deliterate. The coefficient h is e carareter. The cofficient f is callec the feeding level anc is a variable. If the fish gets everything it can eat we put $f=1$. If it gets a fraction of whet it can eat, the fraction is f. If it gets nothing at all we have $f=0$. As shown kelow, the feeaing level is not a function of time coly, but also of all the N 's and w's in the system. Assume now that orly the traction v cf of the food consumed is actually assimilatec and available for growth ard basic metabolist. This fraction is the fcsitive term of the growth equaticn. eq (2). In other words:-

The Feeding Level

The next protem is to determine fas a function of availate focce phi. (The notaticn of andersen and Ursine 197?, is adoctec excert that greek letters are spellec cut for technical reasons). We choose a sircte hyperbctic expressicn:-

$f:$ phi/(phi + Q)
(6)
where Q is a parareter of the 'half saturaticn constant type. Note that Q is large quantity tecauseq (6) is not dividec through by the volume of the sea investigatec. By this formulation he express that the feeding level increases with increasing fooc concentration. rafidly at lew concentraticns and towards an asymptcte of $f=1$ for high concentrations. An application to data for a cladoceran is illustrated in fig 1. This curve can be derived analytically, tasec on assumftions cn the rate of search for food and the rate of 4000 consumption (Andersen and Ursin, 1977).

```
So far so good, tut we must alsc descrite the availatle food,
phi. Tc a first apcroximaticn chi can te the biorass of all
animals and plants in the sea. Let the index i indicate the
predatcr and the incex j the crey. Brackets in the expression
belcy irdicate, that this is not the final formulation. The
contritution of each category of prey becomes (phijij) = Nj wj
8nd we get:-
(chi\mp@subsup{i}{i}{})=\mp@subsup{\sum}{j}{}(ch\mp@subsup{i}{ij}{})=\mp@subsup{\sum}{j}{}\mp@subsup{N}{j}{}\mp@subsup{w}{j}{}.
But this will not do. Supocse that i (the fredators) are one
year cld herring and j (the prey) three years old coo. Three
years old cod are nct fooc for cne year cld herring. They are
too big. It is necessary to intrcduce s coefficient g indicating
the suitability of j as food for i:-
```

ph $j_{i j}:=g_{i j} N_{j} W_{j}$
$p h i_{i}=\sum_{j} p h i_{i j}=\sum_{j} g_{i j} N_{j} w_{j} \quad \quad C \quad<=9<=1 \quad$ (7)
For $g=1$ we count all of j's ticmass as fecd for i. For g $=$ C
we count j out entirely. Else, we count the fraction g cf j's
ticrass as food available tc i.
Another coefficient could te irtrocuced to ascertain for in-
stance, that celagic animals eat other celagic anifals colye tut
such entroiderings are not cur purfose in this short overview.

```
Precater/prey Size fatio
--------------------------
```

The solution of one pretlem creates the next. We must describe g ss a function of predator size and prey size. When the rodel was toriulated in 1979 very little was known about frey size preferences of tish or other marine anirals. we rade the assumpticns (1) that there exists areterred prey size, (2) that the ratio precator/orey weight rerains the same through a predatcr's lifetire and. (3) trat e crey twice the preferreo size is as acceptatle as a prey half tre preferrea size.

These assumptions leao to the conclusion that values of the coefficient g are log normally distributed about the logarithm eta of the oreferrec predator/prey sizeratic. Except for one thing: we want to adjust the curve to a maximut value of one insteac of adjusting to an area one unoer the curves we are therefcre not dealing with protakilities cf a log normal distritution. Denoting the standare cieviation ty sigma we have:-

$$
\begin{align*}
& =\exp \left(-\operatorname{samma}\left(\ln m_{i}-\ln w_{j}=e t a\right)^{2}\right) \tag{8}
\end{align*}
$$

where the carameter garma is introduced to simflify the expres. sion. In the present skeleton rocel eta anc sigma are, unrealistically, treated as universal constants. The parameters were estirated for two fish species (Ursin, 1973) and there was found a fair agreement with availatle cata mhich were = and remain few. The shares of the curves are shemn in fig 2. Fenchel (1975) indecendently develceec a similar recoel for the food item selection of prosctranchs ef the genus Hyerotia. Diserepancies fror the expected curve are discussecty Ursin (1973) and Agger and Ursin (1977), tut the hypothesis is retainec sofar.

The Relation of Corsurction to Nertality

This trings us te the end of the descriction cf food consumption ano me realize that the tctal consurfticn ty all animals in the eccsyster is:-


```
and that this is the quantity which mLst be exfressed different=
ly tc cescrite predation mertality. Introducing a eredation
mortality coefficient M2 we rust heve, in orcer to retain tho
rass talance within the system:-
```



```
That is, the total preaaticn.mortality of all erey j equals the
total consumption ty all preoators i. hhat is neeaed is an
exfression for the individual fredation rortality coefficient Nzj
of frey j as develofed below.
Mortality in General
----------------------
The original expressicn . ec (1), for the change in numters is:-
dN/dt: = - (F + M) N(t).
M must be partiticnec intc precaticn mortality M2 and residual
natural mortality N1 so that we have:-
dN/dt:= = (F + M1 + M2) N(t).
```

One kind of residual martality namely, the censity cependent
mortality of young fish, is here cealt with in a different way,
by transfering it to the morent cf hatching (see belcw). The
remaining mi mortality, whichever its causes, is treated as a
constant: M1 remains a carareter just like the M (for adult
fish) of Beverton and Holt, wheress censity dependent rortality
and eredation mortality must te develofed as functions of some
rew farameters. This warrants the rore oetailed treatrent of
these rortalities belon.
Precation Nortality
The coefficient $\mu 2$ cf precaticn mertality is the limit of the
ratio cf the amount corsurec (in a tire interval) over biomass
when the time interval decreases tewards zero. To find the
amount censured we write first the sur cf everything consumed by
all eredators i:-
$\sum_{i}\left(o R_{i} / d t\right) N_{i}$ -
The feod available te each precator is definec above in eq (5)
and denoted ohif. One cart, chiij, of chij ccrisists of the crey
j in wich we are interestec. The fraction of j in the fooc
availatle to i is ohi $i_{i j} /$ phi i_{i}. The predetcr i is eating inois-
crifinately out of its avaitate focd resources because the
discrimination is already accounted tor ty tre factors g in the
expressicn for availate feca. Tre censurec tood of i contains
the sare fraction of j as the availatle foca. Therefcre, j's
lesses due to all kinds of fredaticn are:-
$\sum_{i}\left(f h t_{i j} / D h i_{i}\right) N_{i}$ OR $/$ ct.
Diviaing ty the tionass of j we rave $\begin{aligned} & \\ & 2 \text { oirectly tecause using }\end{aligned}$
infiritesiral notation it is net necessary to tother atcut
linitirg values:-

$$
\begin{equation*}
M 2_{j}=\sum_{i}\left(\left(D h i_{i j} / E h i_{i}\right) N_{i} G R_{i} / C t\right) /\left(N_{j} w_{j}\right) \tag{10}
\end{equation*}
$$

Sumfirg over j gives the ioentity formulated in the previous paragraphe eo (8). Perhaos it cught to te menticned that i ana j were used differently ty Andersen onc Ursin (1977).

```
Density Decendent Mcrtality
```


Density dependent rertality ef young fish is necessary in the model. with recruitrent proferticnal to mature tiomass the model is not stable: numbers increase continually, feeding levels decrease and mean weights of age grours decrease accordingly.

The simplest way of introducing censity oeperaent mortality is by letting it reduce eqg nurters. Egcs are hatched imrediately in the medel. with E the number cfeggs spannec we express the numter E1 of hatchedeggs as:-
$E 1=E(C /(C+E))$
(11)
where C is a species scecific farareter anc $C /(C+E)$ is the fracticn hatched. The expressicn can be derivec from the model descrited in paragraph 6.1.4 of eeverton ard Holt (1957) by putting densfty independent mortatity to zerc, tut it can alsc be considered an emcirical relationship with the effect of making the probatility of hatching inversely related to egg procuction.

The expression statilizes the rocel so that, eventually, a stationary solution is reachec. In the steacy state the same stcek cordosition is observed every year on the sare oate. which steady state is reached decends ufen the cheice of parameter values and is independent of the starting values of numters and body weights.

This simfle model of density dependent mortality gives an unrealistic descriction of the feod consurftion of fish larvae because too many are killed befcre they start feeding. As pointec out by Jones (1978) the lerval food censumption amounts to a considerable fraction of the total focd censumption of the steck. Tc descrite this realistically, a more elaborate model of density decendent rertality is called for (Andersen and ursin. 1977. Apcendix).

Spawning

In orcer to retain the age group cencept of Eeverton and Holt it is necessary to introduce momentareous scawning at fixed time intervals at which the mature age erours loose a fraction pi of their weight. This ticrass is divided by the weight orega of cne egg to give the egg nurber Etror bhich the number hatened. E1, is calculated as described atove. The El larvae form the youngest ace group. The oleer grcufs move one step up the age grouf ladder. The olcest age group contains after spawning the same arimals as tefcre, but with memters of tre oldest-tut-cne addec. Eody weight cf the olast age grolf is recalculatec accorcinglye see below.

```
The Nedel Set-Up
```



```
Species Structure ard Starting values
```



```
The redel is here descrited witr 4 species a, b, c and d, anc
with halfyearly discontinuity coints tc cermit spamning. lhe
system is open for introduction cf ratter thrcugh species a of
which a constant arcunt is added at the teginning of each
halfyear. Exit frem the system is through faecesemetabolism
(cortustion), unspecified M1 mcrtality, density depencent eqg
mortality and fishing.
Species does not est, does not netabalize and coes not
procagate. It is cf no consequence hcw much is left at the end
of a halfyear: the losses in that halfyear are replaced at the
beginning of the next. This sirulates an annual phytoclankton or
zooplankton cycle with a spring raximum and on autumn maximum.
Species t, c and deat, are eaten, metatolize, oie from unspeci-
fied (Mi) causes ano cropagate at the discontinuity points, with
a density dependent egg mortality.
Species b spawns twice every year, beginning when one year old.
It is a small animal as for instance a eurhausid. Species c
scamns ir the autumno teginning bhen tho years cld. It can be
visualized as a small cluceid. Scecies d spawns in the spring
and kegins when three years old. It can be visualized as a
mediuf sized gadoid fish.
we start the computaticn in the auturn when species c has just
spebned, and use the initial data set (state vector of nurrers
and bocy weights) listed in latle l. Note the 'empty' entities
nos. 6. G, 11 and 13 fer scecies c and c which spawn coly once a
year. Yields are put tc zero at the teginning ct the comoutation
(and at every discontinuity coint) ard therefere do not figure
in Tatle 1.
Parareter Values
-\infty--*-*-*-*-*-*-*
Some parameters are handled as universal constarts. They are:-
1. the fraction assimilated of focd ingestec. The v of ea (5):=.4
2. the prey size creference caraneters of eq (8): eta = sigma
    = In 100 = 4.6C517 from which gamma = .1C857;
3. the half saturatior constant of eq (6): 0 = 50 000:
4. the fraction of mature tiorass scanned: ri= .2:
5. the residual natural mortality: M1 = - 1.
Other parareters must ke handled as scecies scecific, or the
model wculd not make sense. Their curfose is to create anirals
of cifferent body size and differert stcck size. They are the
coefficient of focc consumfticn h, ec (4), the coefficient k ot
the regative term cf the grchth equaticn, ec (z). the egg size
oresa, and the recruitrert carameter C ot ec (11). The values
useo are listed in lacle 2. For species a there are two carare=
ters contye the corstant body size, m=.001 ge and the input at
```

```
the tegirning of each hatfyear. N = 1 COC OOC CCO.
```

$\begin{array}{r} \text { Scecies } \\ \text { aro } \\ \text { entity } \end{array}$	$\begin{array}{r} \text { Age } \\ \text { years } \end{array}$	\wedge	grams
a 1	0	1 OCC CCO OCC	. $0<1$
2	0	40 ecc	- 11
$b \quad 3$. 5	10 OCC	.25
4	$1.0+$	15 CCC	1.60
5	0	1 OCO CCC	. $C 2$
c 6	. 5	none	
$?$	1.0	10 C	25.00
ε	$1.3+$	10 C	4C.CO
9	0	none	
10	. 5	1 OCC	3.10
d 11	1.0	none	
12	1.5	2	42.50
13	2.0	nore	
14	$2.5+$	1	25C.CC

Table 2 . Srecies scecific carareter values.


```
Eggs are made very kig in crcer to speec up the nurerical
integration which has to be cerfcrmec in short steps for small
values ct w. The relative gromth rates of very young animals are
unrealistically high in the grcwth ecuetion usede
The fishing mortality coefficients are as follcms:-
F}=\mp@subsup{F}{\lambda}{}=\ldots.=\mp@subsup{F}{5}{}=
FG}=\mp@subsup{F}{7}{\prime}=1 Heavy 'young clupeio' tishery.
F:=.2 Modest 'adult clupeid' fishery.
F
f/g = 5 Medium fishery for 'adult gadoids'.
The Differential Equations
Th--------------------------------
The task is to integrate the following equations:-
```



```
Not counting the 'erfty' index numters this amounts to the
simultaneous numerical integraticn of 2& first crder differenti=
al equations. At first sight the task is extremely simple, but
for each step it is necessary to evaluate ti ano m2i according
to the descripticns in eqa 4, 6. 7. &, and 1C, which is a time
consuring process.
The irtegration can be performed by simply adding to current
values of N,w and y the values cf the differential quotients as
evaluated for. e. g.. one week at a time. A fcurth order Runge=
Kutta frecedure cbtains the sare accuracy faster.
The Discentinuity Pcints
*---------m---------------------
The processes of sfawning and moving the age groups one step uc
the ladder are examflified telcm by species b (indices 2, 3 ana
4). We designate ty N(2,bef) anc N(2,aft) the numbers in entity
2 before and after spawning, ard similarly for the other
entities and for weights.
The nurter of eggs is the biorass tires the fraction spamned,
divided by egg size:-
E=ci(N(4,tef)w(4,tef))/crega
N(2,aft) = (E C)/(E + C) (the numter cfeggs hatchea)
N(3,.aft) = N(2,bef)
N(4,aft)=N(3,bef) +N(4,bef).
For the tody weights we have:-
```

```
*(2,aft) = omeqa
w(3,0ft) =w(2,bef)
Calculating w(4,aft) is rere complicated. After soamning the
weight w(4,bef) is reduced by tre fracticn pi. We mant a
weighted mean of this and the so far unchangedw(3,tet), the
weighting factors teing the numters N(4,tef) and N(3,bef).
Thus:*
    (1 - pi) w(4,bef) N(4,tef) + w(3,tef) N(3,fef)
```



```
N(4,bef) + N(3,bef)
The similar calculations for scecies c and de scamning only once
a year, are describec in Andersen and ursin (1977. p. 384) and
it should not be necessary to go into them here.
Calculation Results
```



```
Someone might want to write a program in orcer to visualize the
functicning of the rodel in which case it is desirable to check
the cutcut. Hence Table 3 which stows the centents ot the state
vector of numbers and tody weights after the first ano secono
halfyears, before and after spawning. Similarly, Tatle 4 shows
the st8tionary solution achieved after about 3C years, depending
on steplength. starting values arc the numter of significant
digits.
```

Table 3. Trial runs. State vecter of numbers and tedy meights after cne and two haltyears, before ard after sfabning. To 4 significant digits.

After second halfyear

-	1	418600 COC	. CC1C	$1 \operatorname{coc} \operatorname{coc} 000$. 0010
	2	6509	. 2649	19280	. 0100
b	3	7.688	. 4338	6509	. 2649
	4	839.3	1.16 C	847.0	. 9231
	5	,		7066	.0200
c	6	16 620	3.649		
	7			16620	3.049
	8	89.19	27.01	89.19	21.60
	9	. 5433	9.516		
	10			. 5433	9.516
d	11	769.7	79.44		
	12			769.7	79.44
	13	1.707	216.9		
	14	.5398	473.3	2.247	278.5

rable 4 . Continuation of the trial run cf ratle 3 : steacy state achievec atter 30 years.

After any second halfyear

a	1	102800 COC	. 0010	$1000 \operatorname{coc} \operatorname{coc}$. 0010
	2	136 COC	. 23 Cl	848060	. 0100
b	3	52990	. 6461	136000	. 2301
	4	61630	1.195	114600	. 8125
	5	none		967.4	. 0200
c	6	1551	4.324	none	
	7	none		1551	4.324
	8	1683	17.65	1683	14.12
	9	1.261	10.44	none	
	10	none		1.261	10.44
d	11	1.065	148.3	none	
	12	none		1.065	148.3
	13	. 9499	496.5	none	
	14	1.145	1195	2.095	815.8

Appendix 2

Mathematical background of Laevastu-Favorite Bulk Biomass Model in "skeleton" form
 by

N. Daan and T. Laevastu

Contents

Abstract

1. Introduction 2. The basic biomass equations 3. Trophodynamic equations 4. Recruitment in biomass based models 5. Model inputs and the unique solution as equilibrium biomasses 6. Symbols for constants, calculated parameters, and state vectors 7. References

Abstract

The basic formulas of Laevastu-Favorite Bulk Biomass Model (BBM) are given in simplest possible (skeleton) form in terms which are similar to those used in conventional fisheries population dynamics. Although the formulas have been used in ecosystem model, they can be applied with some modifications to a succession of year classes, leading to a biomass based multispecies cohort analysis. The BBM model uses a discrete time stepping procedure with one month time step.

When at least one biomass is well known and the mean food composition is assumed to remain constant, there exists an unique solution ("equilibrium biomasses") for the set of biomass equations for all species in the ecosystem, provided they are connected to each other via trophic relations. This solution can be obtained with iterative methods as outlined in this report.

The recruitment control in biomasses based models is effected via the change of the growth rates of individual species.

1. INTRODUCTION

The Bulk Biomass Model (BBM) of Laevastu and Favorite (1978a) has been described in technical report and programme documentation which present the programme formulation mainly in finite difference form. The mathematical background of the skeleton (basic) BBM model is described in this paper, using abbreviations which are conventional to many single species population dynamics formulations.

The equations presented here can be applied to any fish species, The formulations and treatment of plankton and mammal (apex predator) are excluded. The biomass and trophodynamic equations can also be applied, with some modifications, to a single cohort of any species. The numerical behavior of the individual formulas is well known and thus not described here. Of the numerous "auxiliary" computation formulas, which are used in the Prognostic Bulk Biomass Model (PROBUB), only a few are presented in the text.

The skeleton $B B M$ model is the simplest multispecies ecosystem model. It is a biomass based model (in contrast to conventional number based models). The biomass growth and mortality is computed in discrete time steps, The biomass growth rate is computed from empirical data of annual growth rates and distribution of biomass with age. The latter is obtained from the age frequency distribution for exploitable part of the population and for the prefishery juveniles it is computed with an age-dependent mortality rate (mainly predation mortality) (Laevastu and Favorite 1978b). Examples of these two data sets required for computation of the mean biomass growth rate are given in Figures 1 and 2. The mean biomass growth rate $\left(\gamma_{i}\right)$ is $\gamma_{i}=\Sigma \gamma_{a} * B_{a}$, where γ_{a} is the growth rate of a given age group (cohort) and B_{a} is the fraction of total biomass in this age group.

The major component of the "natural mortality", i.e. the predation mortality (or ecosystem internal consumption), is computed in detail with the model as an age (and time) dependent parameter.

2. THE BASIC BIOMASS EQUATIONS

The biomass (B) of a cohort, species or group of species (i) at the end of a given time step (t) (monthly time step is normally used) is computed with a well-known formula (1), using biomass from previous time step ($t-1$) and growth rate (coefficient) (g) minus total mortality rate (Z) for this time step (for symbols see Chapter 6).

$$
\begin{equation*}
B_{i, t}=B_{i, t-1} * e^{g_{i(t)}-Z_{i(t)}} \tag{1}
\end{equation*}
$$

The yield (Y) is computed with a prescribed fishing mortality coefficient ϕ_{i}. It should be noted that all the instantaneous coefficients (growth, mortality, fishery) are different than the corresponding conventional coefficient for number based models which use annual time step. Thus all these coefficients have to be computed on biomass base and for the time step used in the model.

$$
\begin{equation*}
Y_{i, t}=B_{i, t} * e^{-\phi_{i(t)}} \tag{2}
\end{equation*}
$$

As relatively short time step is used in the computation, the second order terms, such as nonlinearities in growth and mortality during the time step, can be neglected. Furthermore, the fishing mortality (fishing intensity) coefficient must be adjusted to the mean biomass present. If the biomass changes considerably during the course of the computation and a predetermined yield per unit time is required, the fishing mortality coefficient must be multiplied by a factor of mean (base) biomass divided by actual biomass ($\phi_{i, t}=\phi_{i}^{0}$, * ($\left.\bar{B}_{i} / B_{i, t}\right)$.

The growth coefficient is computed in each time step, accounting for the effects of starvation in the previous time step:

$$
\begin{equation*}
g_{i(t)}=g_{i}^{0} *\left(\left(R_{i, t-1}-S_{i, t-1}\right) / R_{i, t-1}\right) \tag{3}
\end{equation*}
$$

If there was no starvation in previous time step $\left(S_{i, t-1}=0\right)$, the rate of growth $\left(g_{i(t)}\right)$ will take the prescribed value g_{i}^{o}, but if the species was not able to get all the food required for maximum growth rate $\left(R_{i(t)}\right)$, the prescribed growth rate will be reduced by the ratio of the amount of food which the species was not able to get during the previous time step ($\mathrm{S}_{\mathrm{i}, \mathrm{t}-1}$) over the total amount of food required by the biomass to grow under unlimited conditions $\left(R_{i, t-1}\right)$. Both values are available from previous time step and the possible error caused by this necessary backstepping choice is again minimized by the use of short time step in the computations.

The initial (prescribed) growth rate is presented in past BBM models as a harmonic function over time to take account of seasonal differences in growth $\left(g_{i}^{0}=\gamma_{i}+\sigma_{i} * \cos \left(\alpha_{i} t-\kappa_{i}\right)\right)$ where γ_{i} is the annual mean growth coefficient, σ_{i} is half of the magnitude of its annual change, α_{i} is the phase speed and k is the time lag to reach the maximum. Furthermore, in full BBM models the growth rate is made a function of either surface or bottom temperature. Growth rate is also a recruitment parameter in biomass based models (see Chapter 4 below).

The mortality rate $\left(Z_{i(t)}\right)$ is the addition of all negative rates of changes representing thus the total mortality rate:

$$
\begin{equation*}
z_{i(t)}=\phi_{i(t)}+\mu_{i}+\beta_{i, t-1} \tag{4}
\end{equation*}
$$

A11 rates of change are presented as instantaneous coefficients and are therefore additive. Fishing mortality $\left(\phi_{i(t)}\right)$ and natural mortality from old age and diseases, including also spawning stress mortality (μ_{i}) are prescribed, but
the predation mortality coefficient $\left(\beta_{i, t-1}\right)$ is computed trophodynamically in previous time step from the ratio of consumption of the species over its
$\operatorname{biomass}\left(\beta_{i, t-1}=\ln \left(1-\left(C_{i, t-1} / B_{i, t-1}\right)\right)\right)$.
The general time dependent scheme of computations is given in Figure 3.

3. TROPHODYNAMIC EQUATIONS

The amount of food eaten by a species $i\left(R_{i(t)}\right)$ with unlimited food availability is:

$$
\begin{equation*}
R_{i(t)}=B_{i, t} * r_{i} * \tau \tag{5}
\end{equation*}
$$

where r_{i} is the prescribed daily ration (in fraction of body weight daily) and τ is the length of time step in days. If the growth rate $\left(g_{i}^{0}\right)$ is made a harmonic function over the year, r_{i} must also be made a harmonic function $\left(r_{i}=\rho_{i}+\partial_{i} * \cos \left(\alpha_{i} t-\kappa_{i}\right)\right)$.

If the food supply of all food items for a given species would be unlimited, we could compute the consumption of each food item (e.g. the consumption of species j by species $i\left(C_{j, i}\right)$) from the food requirement $\left(R_{i}\right)$ and the fraction of species j (prey) in the food of species i (predator) $\left(\pi_{i, j}\right)$:

$$
\begin{equation*}
C_{j, i}=R_{i, t} * \pi_{i, j} \tag{6}
\end{equation*}
$$

In this case the total consumption of species i would be:

$$
\begin{equation*}
C_{i}=\sum_{j} C_{i, j} \tag{7}
\end{equation*}
$$

and the starvation would be zero. However, some food might be in limited supply and only part of the biomass of a prey is usually accessible as suitable food (re size dependent feeding). The vulnerability of one species (prey) to another species (predator) is prescribed by average composition of the food of predator. Therefore the fraction of the each species which is allowed to be consumed in each time step is prescribed in $B B M$ model $\left(p_{j}\right)$, considering mainly the size composition of the biomasses of individual species. Furthermore, substitution of low-availability food items with high-availability items must be used. However, conditions can arise
where full substitution is unrealistic and partial starvation will occur.
There are various ways of computing the actual consumption with the above described limitations. The following serves as an example. First, the fraction of biomass of a given species consumed in previous time step (month) (p_{a}) is compared to the allowable fraction $\left(p_{j}\right)$. If the actually consumed fraction exceeds the allowable fraction, then the prescribed mean fraction of this species in the food of the species under consideration is decreased ($\pi_{i, j}=p_{j} / p_{a} * \pi_{i, j}$). The new food composition for the species i is summed and the missing fraction of food requirement is divided between these food items which had an ample supply in proportion of their occurrence in the mean food composition (prescribed at the start of the computations). However, if the missing fraction is large (e.g. in excess of 40% of food requirements), part of this missing fraction is recorded as starvation. The latter part of this approach requires thus several subjective decisions and can require a lengthy computer program.

4. RECRUITMENT IN BIOMASS BASED MODELS

The recruitment is usually depicted in number based models as a time dependent discontinuity, relating it to discrete spawning period. In the biomass based model the spawning can be treated as a continuous process. This consideration is more acceptable if we think in terms of size groups rather than age groups, a long spawning period and consider variations in growth of individuals belonging otherwise to the same age group.

Considering a continuous recruitment to all size groups and assuming (a) that there are no exceptionally strong or weak year classes of postlarval juveniles, the recruitment would be proportional to the biomass present. The variations in postlarval recruitment would be depicted in biomass based model by the variations of growth coefficient in the species biomass (if the species is treated as one unit). This is shown in Figures 1 and 2, where high growth rate
in postlarval juveniles (dotted line in Figure 1) and an increase in biomass of these postlarval juveniles (dotted curve in Figure 2), would result in increased overall (mean) growth coefficient for the species. (A strong year class of older fish would lower the mean growth coefficient.)

On the other hand, large spawning biomasses are known to produce proportionally smaller year classes and small spawning biomasses are known to produce proportionally large recruitment (year classes). Therefore, the recruitment could be regulated (controlled) in biomass based models, making the growth coefficient inversely proportional to biomass present.

$$
g_{c}^{o}=g_{i}^{o} \times B_{i}^{E} / B_{i, t-1}
$$

where B_{i}^{E} is the equilibrium or mean biomass of species i. This computation can be done in the models in prognostic mode after the determination of the equilibrium biomasses.

The factor $B_{i}^{E} / B_{i, t-1}$ dampens the possible fluctuations of recruitment rather heavily so that the much above or below average recruitment does not appear. It has been found somewhat more acceptable to use the term $\sqrt{B_{i}^{E} / B_{i, t-1}}$ instead. It could be generally noted that in contrast to number based models, the biomass models are not oversensitive to errors in recruitment computation.
5. MODEL INPUTS AND THE UNIQUE SOLUTION AS EQUILIBRIUM BIOMASSES

If the biomasses of all species in the ecosystem do not change over a year (i.e. previous January biomass is the same as actual January biomass), then we can say that the biomasses are in equilibrium. This implies that the growth of the biomass equals its removal by mortalities (specially by predation). If we want to achieve this equilibrium, we can change either growth rate, mortality rate, or biomass level itself. The growth rate is determined by empirical data
and the other factors, such as temperature, are assumed in the equilibrium case to be the same from one year to another (although seasonal changes can occur). Fishing and other mortality rates are also assumed to remain the same from one year to another. The predation mortality (consumption) must then balance (together with other mortalities which remain unchanged) the growth rate. This balancing can be achieved if the biomass levels of the predators are adjusted at the end of each year so that at the end of the iterations biomass of one January is the same as in the next January. This adjustment can be done by finding a unique solution to the biomass equations of all species (or groups of species) in the ecosystem. This unique solution exists when one of the biomasses and the consumption by that biomass is predetermined (assumed to be known and fixed). In this case an iterative solution can be applied to adjust the biomasses of other species once after each year's computation:

$$
B_{i, t 12,0}=B_{i, t 12, a}+\frac{\left({ }_{i b}-B_{i, a}\right)}{k}
$$

where $B_{i, t 12,0}$ is the new (adjusted) biomass for December, $B_{i, t 12, a}$ is the previous December biomass, $B_{i, b}$ is the biomass of previous January (computed as next step from $B_{i, t 12, a}$), $B_{i, a}$ is the computed biomass in January one year later and k is an iteration constant (3.5 to 10 , depending on the state of convergence). Forty years or more of computation is needed before the solution converges to a unique (equilibrium) solution. The speed of convergence is among others dependent how close to equilibrium values were the initial guess biomasses at the start of computation.

The model requires as input a number of species specific constants (see Chapter 6). Besides these, the biomass of at least one species must be prescribed as known (i.e. not altered in iterative adjustment). The biomasses of other species must be initially prescribed as the best first guesses. The first guess values of the consumption (C) can be computed by assuming C_{i} to be eight percent of B_{i} per month.

In order to determine the carrying capacities of given ocean regions with the model and to obtain realistic equilibrium biomasses, the model must include all species. Computer capacity as well as basic information available does not usually allow the specification of all species separately, but many species must be grouped into ecological groups, where the composition of food and feeding habits are the main criteria for grouping.
6. SYMBOLS FOR CONSTANTS, CALCULATED PARAMETERS, AND STATE VECTORS

Constants

$\alpha_{i} \quad-\quad$ phase speed, time step dependent (e.g. 30 degrees per month, radians)
γ_{i} - annual average instantaneous growth rate
$\phi_{i} \quad-\quad$ instantaneous fishing mortality coefficient
$\partial_{i}-$ half amplitude of annual change of food requirement (fraction of body weight daily)
$\sigma_{i} \quad-\quad$ half amplitude of annual change of growth rate
$\rho_{i} \quad-a n n u a l$ average food requirement (fraction of body weight daily)
$\kappa_{i} \quad-\quad$ phase $1 a g$ (in radians)
$\mu_{i} \quad-$ instantaneous rate of mortality (other than predation mortality)
$\pi_{i, j}$ - fraction composition of prey j in the food of predator i
$\mathrm{p}_{j} \quad-$ fraction of biomass j allowed to be taken in one time step (month)
$r_{i} \quad-$ prescribed rate of food requirement (fraction of body weight daily)
$g_{i}^{o} \quad-$ prescribed instantaneous growth rate
Note: The latter two parameters $\left(r_{i}\right.$ and g_{i}^{0} can also be computed if γ_{i} and ρ_{i} and related constants are prescribed).

Dynamically calculated parameters

$\mathrm{g}_{\mathrm{i},(\mathrm{t})}$ - calculated instantaneous growth rate
$Z_{i(t)} \quad$ - calculated total instantaneous total mortality rate
$B_{i}^{E} \quad-$ equilibrium biomass

State vectors

```
\(B_{i, t} \quad-\quad\) biomass of species \(i\) at time \(t\)
\(C_{i(t)} \quad\) - consumption of species \(i\) (predation) during time step \(t\)
\(R_{i(t)} \quad\) - food requirements
\(S_{i(t)}\) - starvation (the amount of food missing from the full food requirement
        \(\left.R_{i(t)}\right)\)
\(Y_{i(t)} \quad-y i e 1 d\)
\(C_{j, i} \quad\) - consumption of species \(j\) by predator \(i\)
```


7. REFERENCES

Laevastu, T. and F. Favorite. 1978a.
Numerical evaluation of marine ecosystems. Part I. Deterministic Bulk Biomass Model (BBM). Northwest and Alaska Fisheries Center, Processed Rpt. 22 p. Laevastu, T. and F. Favorite. 1978b.

Fish biomass parameter estimations. Northwest and Alaska Fisheries Center, Processed Rpt. 12 p.
11

Figure 2.--Distribution of biomass of Pacific herring within different year classes (\% of total).

(Time step)	t-1	t	t+1
(Food requirement) (Starvation) (Consumption) (Biomass)	RSCC		
		R S C	$\}$

Figure 3.--Time stepping scheme of computations in BBM model.

Appendix 3
Programme Documentation
Skeleton Bulk Biomass Model

SKEBUB
by

T. Laevastu

CONTENTS

1. Purpose of the model
2. Sequence of computations and brief outline of the programme.
3. List of symbols.
4. Programme listing with annotations.

1. PURPOSE OF THE MODEL

Biomass based ecosystem simulation models must be adapted to available data from given regions. Thus no ecosystem model is universally applicable without considerable reprogramming. Some basic approaches and formulas are, however, used in all biomass based ecosystem models. The following skeleton bulk biomass model (SKEBUB) is an example of the simple bulk biomass ecosystem simulation model and shows also the method of iterative solution to equilibrium biomasses. Furthermore, it serves to explain the working of discrete time stepping ecosystem models in general.

2. SEQUENCE OF COMPUTATIONS AND OUTLINE OF THE PROGRAMME

The enclosed example programme contains only five species/groups of species: herring (and other pelagic fish), pollock in two age groups, flatfishes, and "fish food benthos". Marine mammals are lumped in one group and consumption by them is used as a "forcing function". Zooplankton standing stock is simulated with a harmonic formula.

The DATA statement introduces the main growth rates, their harmonic constants, food requirement coefficients and their harmonic constants, monthly mean pollock (group 2) biomass (if there is a desire to keep it constant), mean composition of food, and maximum allowable consumption of the species per time step (month).

After setting the zooplankton constants and zeroing the arrays, the initial biomasses and their initial consumptions are introduced.

The computations start with the simulation of zooplankton standing crop, whereafter the consumption by mamals is computed.

The computation of growth, mortalities, and consumption of the fish species and benthos follows species by species. Within these computations the feeding subroutine FOCONS is called which also recomputes the composition of food according to availability, as well as possible starvation.

The "month end computations" include the computation of fraction of biomass consumed, transfer of fraction of juvenile pollock ("pollock one") to adult pollock ("pollock two"), and outputs.

The iteration of equilibrium biomasses is carried out with variable iteration constant. A "recruitment control" is computed before increasing the month account. Subroutine PRIFLD is called for printing of outputs and subroutine FOCONS is called in species computations for recomputing of food composition, for computing of consumption (predation), and for estimation of possible starvation. Additional comments can be found in the enclosed programme.

3. LIST OF SYMBOLS

AGA - iteration constant
AL - (not used)
ALP - phase speed (30 deg)

BE	- benthos biomass
BEC	- consumption of benthos
BEE	- "equilibrium" biomass of benthos
BEI	- "adjusted" biomass of benthos
BEJ	- monthly mean consumption of benthos
BEM	- annual mean biomass of benthos
BEP	- percent consumption of benthos (per month)
BK	- phase lag of maximum food requirement
BM	- biomass of marine mammals
BP	- annual mean food requirement (\% body weight daily)
BR	- half of annual range of food requirement change
C	- intermediate (instantaneous coefficient of predation mortality)
CO	- percentual composition of food
D	- intermediate (in FOCONS)
DI	- intermediate (in FOCONS)
DIF	- difference in biomass in two adjacent Januaries (year apart)
FBM	- total food consumption by mammals
FC	- fractional food composition of flatfish
FF	- flatfish biomass
FFC	- consumption of flatfish
FFE	- equilibrium biomass of flatfish
FFI	- "adjusted" biomass of flatfish
FFJ	- monthly mean consumption of flatfish
FFM	- annual mean biomass of flatfish
FFP	- percent consumption of flatfish (monthly)
FFS	- starvation of flatfish

FL	- yield (catch)
FM	- fishing mortality coefficient
FOOD	- total food consumption
G	- annual mean growth coefficient
GB	- storage array for mean growth coefficient
GG	- growth coefficient (intermediate)
GIK	- phase lag of maximum growth
GK	- phase lag for maximum growth coefficient
GR	- half of the annual range of growth coefficient change
HC	- fractional food composition for herring
HE	- herring biomass
HEC	- consumption of herring
HEE	- equilibrium biomass of herring
HEI	- "adjusted" biomass of herring
HEJ	- monthly mean consumption of herring
HEM	- annual mean biomass of herring
HEP	- percent consumption of herring
HES	- starvation of herring
I	- counter
IS	- species number
J	- counter
K	- month
KIK	- maximum number of years computed
L	- year
LAL	- year when equilibrium biomasses are expected
LL	- year count (in PRIFLD)

LR	- number of experiment (run)
N	- counter (in FOCONS)
NP	- previous month
P	- maximum percent biomass allowed to be consumed
PCO	- percent consumption (in PRIFLD)
PC	- fractional food composition of "adult" pollock
PIM	- phase lag of maximum manmal standing stock
PIP	- consumption divided by biomass
PIZ	- converted phase lag in zooplankton
PV	- (not used) (month1y mean biomass of adult pollock, if kept constant)
PW	- food requirement (computed)
P1	- juvenile pollock biomass ("pollock one")
P1C	- consumption of juvenile pollock
P1E	- equilibrium biomass of juvenile pollock
P1I	- "adjusted" biomass of juvenile pollock
P1J	- monthly mean consumption of juvenile pollock
P1M	- annual mean biomass of juvenile pollock
P1P	- percent consumption of juvenile pollock
P1S	- starvation of juvenile pollock
P2	- adult pollock biomass ("pollock two")
P2C	- consumption of adult pollock
P2E	- equilibrium biomass of adult pollock
- monthly mean consumption of adult pollock	

R

RAC S

UC - fractional food composition of juvenile pollock

ZOP

ZR

- intermediate for percent of consumption of biomass
- factor for conversion of degrees to radians
- starvation mortality coefficient
- sum of unchanged fraction of total
- sum of fractions of food missing
- mortality coefficient (from old age and diseases)
- starvation, amount of food missing (in FOCONS)
- species biomass (intermediate)
- starvation (in percent of food missing)
- sum (intermediate)
- month (intermediate)
- coefficient, growth minus mortalities
- phase lag of maximum zooplankton standing stock
- zooplankton standing stock
- consumption of zooplankton
- annual mean zooplankton standing stock
- percent of zooplankton biomass consumed
- half annual range of zooplankton change

PROGRAM NSSKEL（INPUT，DUTPLT，TAHEל＝1NPUT）
KLAL K，N，MゅNLEMZ
INTEGER STEPSOHALFYR

＊N（14），W（14），F（14），WLOG（14），FHI（14，14），G（14，14），
 KEAU（b，iU）V，ETA，GAMMA，Q，Pi，MI
16 FGRMAT（3Fध．う，F8．Q，2F8．5） PRINT $20, V, E T A, G A M I A, Q, P I, M \perp$

KEAD（2，30L H，K
3O FLKMAT（7F 7．3）
FKIMT $4 U, H, K$

KFAO $(2,30)$ OME．GA
KEAD（jgju）C
26 FORMAI 1769.2$)$
अKINV 60，ÜlEGA，C
0 F FURMAT（1X，FOMEGA $=\neq 4 F 7.3,10 X, \neq C=7,4 F 11.2)$
KEAU（b， 30 ）f
PKINT TC，F
$7 \cup$ FORMAT $(1 A, F F=\neq 14 F 7.3)$
READ $(3,50) \mathrm{N}, \mathrm{H}$
PRINT $00, \mathrm{~N}, \mathrm{~W}$

kta0（כ，$\ddagger 0)$ STEPS，HALFYR
YU FURMAT（214）
FRINI 100，STEFS，HALFYR
\therefore UU FLKNAAIIX，FSTEPS PER HALEYEAR $\neq 2.42$
＋ $5 x, \neq N U$ ．［F HACLFYEARS \neq ， 4 ）
しま＊＊＊＊IN II \＆ALILATION
$N 1=N(1)$
$L=1$
LELTAI $=1 . /(5$ TEPS＊2．）
UELTA＝UELTA1／16．
MOTEP＝＝STEPS 10.
iv $(1)=N 1$
OLOW（1）＝W（1）
U0 114 $1=1,14$
$00114 \quad \mathrm{~J}=1,14$
$114 \quad \hat{O}(1, j)=0$ ．
C\＄\＄\＄DEEGIN HALFYEAR
$+1304120 \quad 1 \equiv 1,14$
Lくv Y（I）$=0$ ．
UU 1 YU NT $=1, N S T E P S$
LU $130 \mathrm{I}=1,14$
$Y(I)=Y(1)+r(I) * N(L) * W(I) * U E L T A$
$W L U G(I)=0$ ．
$1301 F(W(1) \cdot G \Gamma \cdot 0.1 W L O G(I)=A L U G(W(I))$
DG $120 I=1,14$
$F-1(1)=0$ ．
DC ibu $v=1,14$

$P H \perp(1, J)=G(F, J) * N(J) * W(J)$
1 上し $+1(1)=F 1(1)+P H I(1, J)$
$S A M E 1=0 . \quad 5$ SAME2＝0．


```
    SUMI=G.
    OLFF=U.
    OG lov 1=1,14
    CLUW(D)=x(i)
    FヒEULV=F1(1)/(FI(1)+Q)
    Incsu=2.<3.
    URUT(1)=FEEULV*H(I)*(W(I)**TWC3)*JELTA
    SAMEL=SAMEl+N(L)*DRDT(L)
    UWUT=V*URUT(I)-K(I)*W(I)*UELTA
    W(I)=w(I)+iNDT
    LOC SUMI = SUM1+N(I)*DWDT
    00 130 J =1.14
    OLUN(J)=iv(J)
    Mic(N)=0.
    IF(N(J).EG.O.)GOTO 180
    UU 170 I=1.14
        1F(N(1).EG.O.)GO TO 170
```



```
        I7C CONTINUE
```



```
    N(J)=N(J)+UNDT
    SUML=SUM1+0LDW(J) #ONDT
    DIFF=01FF+iN(J)*W(J)-CLDiN(J)*ULDW(J)
    SAME2= 5AME2+M2(N)*Oh以iv(\downarrow)*ELDW(v)
        18U CONT IINUE
    IyU CONTINUE
        SAMQUU = SAME I/ SAME2
        PRINI l&5,NT,SAHEL,SAMEZ,دAMOUR
        l&う FORMAT(1X,\not=CHECK:\not=,5X,I4,5X,2E15.0,15X,E15.6)
        QUU1=SUM1/UIFF
            FK\perpNT l8O,JIFF,SUMI,QUQI
    LE FORMAl(1jX,3ELち.j.9X,EL2.6)
    C*****STEP - LUUP ENDS
    C
    6$5ちゃまSPAWNNING
            00 195 1=1,14
            CLUN(I) =N(I)
        193 LLOW(i)=N(I)
            t=Pl#A(4) ##(4)/0MEGA(2)
            EL=E&C(C)/(C(2)+E)
            w(4) =((1,-H1)*W(4)*N(4)+|(1)*N(3))/(N(4)+N(3))
            w(s)=h(2)
            w(2)=CMEUA(2)
            N(4)=N(4)+N(3)
            N(3)=N(2)
            N(2)=ti
            IF(L/2*2.EG.L)GO TO 230
    CDD"$S SPECIES C UUES NOT SPAWN
```



```
            N(8) =N(8)+N(7)
            OL <lO I=1,2
            J=0-1
            w(J)=w(J-1)
        21C N(J)=N(v-1)
            W(b)=0.
            N(う)=0.
    6***SPECIES U SPAWNS
```


$\mathrm{E}=\mathrm{r}$ (*) (14)**(14)/0MEGA(4)
$E L=E * C(4)(C(C)+E)$
$\mathrm{m}(14)=(1,-\mathrm{P}) * W(14)$
uC $220 \quad i=1,4$
$J=14-1$
$w(\nu)=w(v-1)$
$220 \mathrm{~N}(\mathrm{~J})=\mathrm{N}(\mathrm{v}-1)$
$W(9)=$ LMEGA(4)
$\mathrm{N}(9)=\mathrm{El}$
GC Ta 200
Cみ千 \ddagger END UF UJU HALFYEAR SPAWNING
6***EVEN HALFYEAR SPAWNING
C
CHOSPELES C SPANNS
23C $\quad=r(* N(b) * W(8) /$ CMEGA(3)
$E L=E+C(3) /(C(3)+E)$
$W(0)=(1,-\mu I) * W(8)$
0 C $240 \quad 1=1,2$
$J=0-1$
$n(v)=n(J-1)$
$240 \mathrm{~N}(\mathrm{~J})=\mathrm{N}(\mathrm{J}-1)$
$w(5)=\operatorname{CINEGA}(3)$
$N(う)=$ 上
C*****JPECIES U DOES NOT SPANN
$W(14)=(W(14) * N(14)+W(13) * N(13)) /(N(14)+N(13))$
$N(14)=N(13)+N(14)$
UG $250 \quad 1=1,4$
$J=14-1$
$m(J)=w(J-1)$
$250 ~ M(v)=N(v-1)$
$w(y)=0$.
$N(9)=0$.
C*****CJTPUT AFTLR HALFYEAR
$260 \mathrm{~N}(1)=\mathrm{N} 1$
FKINT $300, L$
JUU FORMAT $/ / /, \neq A F T E R \neq I 3, \neq$ HALFYEAK $/ / / 1 x$,
* FENTITY夫, $23 X, \neq$ BEFDRE $\neq 37 X, \neq A F T E K \neq 1$
$\neq 18 x, \neq N \neq 16 x, \neq W \neq, 21 x, \neq N \neq, 16 x_{2}, W_{N} \neq 11$
OU $3101=1,14$
310 FKINT $320,1, \operatorname{ULDN}(1), O L D W(1), N(1), W(1)$
$3<0$ FURMAT(1X,14,2F10.4,5X,2F16.4)
C** KEADY FGK NEXI HALFYEAR
LF(L.EU.HALFYR)STOP
$L=L+1$.
UELTA =UELTAI
N 3 TEP」=STEPS
GU Tu 11j
END
$\mathrm{H}=0.000$ IU.

\qquad

-AFIER 1. Habrylak


```
` . b
5
```

AFTER 29 HALFYEAR

SLF CKL				AFTER W.
	N	W	N	
1	97353072.1828	. 0010	1000000000.0000	. 0010
2	140900.3711	.2205	- 800982.4495	.0100
3	52900.3851	.0440	140900.5711	. 2265
4	03027.0788	1. 2037	110000.0039	. 8187
5	$3005.49 ว う$	1.2644	$0.0 \cup \cup 0$	0.0000
6	0.000	0.0000	3065.4925	1.22 .44
7	751.1019	- 8.1912	0.0000	0.0000
8	1364.0034	17.00゙2y	2075.2224	14.1962
9	0.0000	N.0060	1.9994	. 0500
10	1.1204	22.4959	vavilio	0.0000
11	$0 \cdot \mathrm{vivo}$	0.0000	1.1204	22.4959
12	. 4062	207.1203	0.0000	C. 0000
13	0.0000	0.0000	. 9862	287.1503
14	1.5181	1132.2937	1.5101	905.8 .349
CHECK:	07 $-.9$	$\begin{gathered} .9730216+04 \\ 26+04 \quad-.442 \end{gathered}$	$3208 E+04$. $100042 E+01$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4．PROGRAMME LISTING WITTH ANNOTATIONS
6
PROGRAM SKEBUR $73 \angle 74$ OPT＝1 FIN 4.7 ± 476＿－ $0.7 \angle 10179 \ldots 03.26 .40$

FREGRAM SKEVUB（INPUT，DUTPUT）

2HE（13），HEC（13），HEP（13），HES（13），Pi（13），P1C（13），P1P（13），P1S（13），．

4G（0），GR（0），GK（0），BP（6），BK（0），BK（6），FM（6），SM（6），PV（13），

orct，PCI，PZJ，FFE，FFI，FFJ，SM

${ }_{c}^{C}$
LATA G／U．，0．14，0．090，0．122，0．054，0．058／，
2GRLC．，0． $36,0.0425,0.0575,6.025,0.024 /$ ， jGK／C1U．，210．，24ن．，211．，2iU．，240．1， $+6 P 10 ., 0 ., 0.0082,0.007,0.06 z 60.00401$ ，勺ИR／0．，0．，0．000，0．007，0．00325，0．002251，
－6K／zav． $2610 ., 240.1210 .2210, \ldots 240.1$ ，

Data input

．IFM／G．，U．，U．006，0．002，0．0i\％，0．0001，
$35410.10 .002,0.002,0.002,0.403,0.0 c 221$
3，PV／i3＊1750．1
$4,40174.20 .022,2 ., 1,10.21$,
ちUC／ठ1．， $2 ., 10 ., 4 ., 2 ., 1.1$ ，
OPC／40．，10．，15．，24．，1，，5．1；
7FC／3．，77．3．2．，5．，0．2，6．1，
$8+140 ., 11 ., 6 ., 9.25 ., 6.1$
C＊～H
C\＃\＃f－MAX．CONS．ALLOWED
C 11 SPECIES 5 CHANGING，HAMMAL LGNS．CUNSTANT

Zooplankton constants
$A L=0.023 j$
6 JaVE URIGINAL GRGWTH COEFFICIENT
LC OUA $I=1,6$
$G B(1)=G(I)$
oui chitinue
© LK－NUMDEK CF EXPERIMENT
$L K=21$
PRINT $200, L R$
3CC FORMAT（／／5X，GHRUN NO，I6／）
C UL LLLPS 1 AND 2 －ZERC ARKAYS
UC $1 \quad i=1,13$
$Z U(I)=Z U P(1)=\operatorname{HEP}(I)=H E S(1)=C$.
GER（i）$=\mathrm{FIP}(1)=\operatorname{PIS}(I)=\operatorname{P2P}(1)=r 25(I)=0$ ．
$\operatorname{FrP}(1)=\operatorname{FES}(I)=0$ ．
1 CLinT INJE
UL $2[=1,13$
ZUC（1）＝もE（I）$=\mathrm{BEC}(I)=H E(1)=H t C(1)=0$ 。
$P_{1}(I)=P_{i} C(I)=F 2(I)=F 2 C(I)=0$ ．
$r F(1)=F+C(1)=0$ ．
－CCNT LINUE
\checkmark EWTEK LivIILAL GUESS FIELDS
（ GUMPUTE INLTIAL（GUESS）CONJLIATTLON
EETLCi＝DEI＝BEL＝3000．
$\Delta E C(1<)=\sigma E_{V}=B E(12) * 0.10$
$H E(12)=H E I=H E E=4200$ ．
$\operatorname{HEC}(1<)=H E J=\operatorname{HE}(12) * 0.00^{\circ}$
$F \perp(1<)=\dot{r} \perp I=P 1 E=4100$ ．

P」Cじ（2）\times P 1J $=P \perp(12) * 0.090$
$\mathrm{F} 2(12)=\mathrm{P} 2 i=F 2 \mathrm{~F}=1750$ ．
ト2C（12）＝F2J＝？2（12）+0.10
$F F(12)=F F_{-}=F F E=3000$ ．
$F+C(i L)=F F J=F F(12) * 0.05$
C＊＊＊＊＊＊＊＊

Du $421-1=6 \quad$ Transfer of allowable consumption
$k(I)=f(I) \quad$ into permanent array
421 CUNTINUE
C $\frac{\text { LLLPLANKILN SIMULATION }}{K=1}$
$k A C=0.0174533$
$A L P=30 . * K A C$

20 $\angle C(K)=2 C M+Z R * C D S(A L P * I-P I L)$
$2 G(K)=L O(K) * 60$ 。
$k=k+1$
$T=K$
IF $(K-13) 20,20,21$
21 PKINT ¿2，（ZJ）I），I＝1，12）

C MAMMALS
C $K-$ MUNTI - YEAR
C LAL－NUMQER OF YEARS FOR EQLILIBRIUM IIEAAIIVIV
\checkmark KIK－TUTAL NJMBER DF YEARS LF CGMPUTATIONS
$L A L=40$
K1K＝48
$L=1$
PRINT 200，L
＜UE HEKHAT $/ / / 5 X, 4 H Y E A R$, I6／）
く3 $\mathrm{T}=\mathrm{K}$
C CONSUMPTIUN BY ANLMALS
c THIS IS TAE UNLY PRESCRIBED ANU FIXLD BIOMASS ANO CUNSUMPTION
420 PLM $=210$ ．$A K A C$

$F B M=B M \neq 0.02 * 30$ ．
$Z O L(K)=F$ OM＊ 0.12
$\operatorname{BEC}(\mathrm{X})=$ FEM＊ 0.1 s
$\operatorname{HEC}(x)=$ FB $M * 0.18$
P1C $(K)=F \sin +0.29$
P2C $(K)=F=1 * 0.10$
FFC $(K)=F$ Bil 40.10
1F（L－LAL）2U8，207，208
207 PRLNT 19，K，BM
19 FGKiAI（／／5X， 18 HMAMAAL BIGMASS，Mx，16，F8．0／）
YKINT 24，（ $\angle O C(K), B E C(K), h \in C(K), P \perp C(K), P 2 C(K), F F C(K))$
¿ 4 FJRMAT $/ / 5 E, 14 H C J N S$ ．BY MAMM．， $6 F 8.0 / 1$
C BENTHLS
$206 T J=2$
$N P=K-1 \quad$ Setting of＂previous month＂index
1F $\left(N^{\mu}\right)<5,25,26$
$25 \mathrm{NP}=12$
CO $G G=G(I S)$
$P \perp F=y E C(N P) / B E(N P)$
Lt（P1H＊1UU．－2．＊P（IS））410，4IU，411

 411 P1F=2.*ト(1) * 0.01
 4iv \(L=A L U G(10-r(P)\)
 \(L=\sigma G-\sin (I S)+C\)
 \(B E(K)=O E(N H) * E \times P(Z)\)
 C HERRING
$I S=3$
Species number
IF (HE (NP) 100, 60,52
$22 P 1 P=H E C(N T) / H E(N P)]$

Conversion of consumption to
413 PI $P=2 . * F(15) * 0.01$
$41<C=A L D G(1,-P I P)$
$S=A L O G(1 .-H E S(N P) / H E(N P))$
$1 F(L-L A L) 51,51,51$
$316 G=G(15)$
GU TO b5
$53 G 1 K=G K(L S) \div R A C$
$G G=G(I S)+G R(I S) * C D S(A L P * T-G I K)$
$55 \quad Z=G G-S \operatorname{Mi}(5)+C+5 * 0 \cdot j$
$H E(K)=H E(N P) * E X P(Z)$
$S P=H_{C}(\Omega)$
$H E(K)=A E(K) * E X P(-F M(I S))$
$F L=5 \hat{P}-11 E(K)$
IFIL-LALI31,209,209
$20 y$ PRINL $3 U, K, F L$
こし FLKMAT(//5x,14HHEK. CATCH, Mz,IO,Fচ.0/)
$31 \operatorname{IF}(L-L A L) 3 \mathrm{~J}, 33,34$
34 GIK $=B \times(1 S) * R A C \quad$ Food requirement coefficient
$\begin{aligned} \mathrm{N} & =B P(1 \text { S })+\square R(15) * C O S(A L P * T-G I K)\end{aligned}$
$C G(1)=\pi C(1)$
$\mathrm{CC}(2)=\mathrm{HC}(2) * 3 E(\mathrm{NP}) / 8 E E$
$C G(3)=H C(3) * H E(N P) / H E E$
$\mathrm{CC}(4)=\mathrm{HC}(4) * P 1(\mathrm{NP}) / \mathrm{P} 1 E$

$C L(\sigma)=H C(\delta) * F F(N F) / F F E$
SU=0.
DO $50 \quad I=1,0$
SU=SU+CC(1)
5o CLivTINuE
DO $271=1,6$
勺L(1) $=C[(1) * 100.15 U$
57 C LiNTINUE
60 T0 $3 j$
Is $p_{n}=3 p(15)$
UU $310 \quad i=1,6$
(0) 1) h hC (I)
jll CENTINUE.
3) CALL $F U C$ UiVS $(K, P W, S S, H E, C U, P, R, Z U C, B E C, H E C, P I C, P C C, F F C, L, L A L)$ Feeding subroutine call
hts $(x)=35$
Herring starvation (relocation)
GC 10201
$00 \quad H E(K)=1$.
C HCLLUCK C.VE
<01 1$\rangle=4$
$1+(P 1(i v P)) 70,70,02$ Other species computations follow the
$O C P 1 P=P 1 C(N Y) / P 1(N P)$
It(P1r*10U.,-2.*P(IS))414,414,415
$415 P_{1} P=2 . * P(i S) * 0.01$
$414 \quad L=A L U G(1,-P I P)$

$S=A L U \hat{G}(1,-\mu 1 亏(N P) / P 1(N P))$

1F(L-LAL)OLe6Le63
ol $\mathrm{Gu}=\mathrm{G}(15)$
60 Tii 0.4
$03 \mathrm{GIK}=\mathrm{GK}(\mathrm{I} \dot{\mathrm{O}})$ *R.AC
$G G=G(1 S)+G K(L S) * C G S(A L P * I-G I K)$
$04 \quad 2=6 G-5 M(I S)+C+S * 0.5$
$P \perp(K)=P 1(N P) * E \times P(Z)$
SP $=P 1(K)$
$F \perp(K)=P \perp(K) * E X P(-F M(L S))$
$F L=S P-P 1(K)$
$1 F(L-L, H L) 102,210,210$
LIL PKINT O5,K,FL
o) FORMAT $/ 1 / 5 \times, 15 \mathrm{HPOL}$. 1 CATVH, $H=, 16, F 8.0 /)$

16́ IF(L-LAL) O9,69,68
of $G[K=\circlearrowleft K(I j) \neq R A C$
$H_{N}=B P(1 S)+B K(I S) \neq C O S(A L H * T-G I K)$
$C O(1)=U C(1)$
$C L(2)=U C(2) \neq B E(N P) / B E E$
$\operatorname{CE}(3)=U C(3)$ *HE (NP)/HEE
$C \overline{(4)}=U C(4) \neq P 1(\Lambda P) / P 1 E$
$C C(5)=U C(2) * P 2(N P) / P 2 E$
$C(10$) $=U C(O) * F F(N P) / F F E$
$S U=0$.
UU $00 \quad 1=1,0$
$\mathrm{Su}=\mathrm{SU}+\mathrm{CO}(1)$
OO CONTINUE
U0 $67 \quad 1=1,0$
CG(1) $=\operatorname{CO}(1) * 100 . / S U$
67° CONTINUE
GU TU 36
69 $F W=B P(I S)$
$00311 \quad i=1,0$
LL(I) $=U C(i)$
311 Cuirlfinue
30 CALL FUCUNS (K, PW, SS,P1,CL,P,R, (OL, $B E C, H E C, P 1 C, P 2 G, F F C, L, L A L)$
$f 15(K)=5 S$
GOTO 202
$7(\mathrm{P} ~ \mathrm{P}(\mathrm{K})=1$.
C PCLLUCK TWO
202 IS $=5$
401 IF $(P L(N P)) 00,80,72$
$7 \angle P I P=P \subset C(N P) / P 2(N P)$
1F(PIP* +UU. $-2 . * P(I S) 1410,410.417$
$4 \perp 7$ FIP $=2$. $* P(15) * 0.01$
$410 C=A L U G(1,-P I P)$
$S=A L C G(1,-52 S(N P) / P 2(N P))$
IF (L-LAL) 7L, 71,73
7\& GG=G(IS)
Gu TO 75
73 GIK=GK(IS) \#RAC
$G G=G(I S)+G R(I S) \neq C O S(A L P * T-G I K)$
7b $Z=6 G-3 M(1 S)+C+5 \# 0.5$
$F Z(K)=P Z(\operatorname{Ar} P) * E X P(Z)$
GL TU 403.
$402 P Z(k)=P V(k)$
$r \subset E=P 2(K)$


```
    403 SP=P2(K)
    PZ(k)=PZ(K)*EXP(-FM(IS))
    FL=SP-P2(K)
    LF(L-LAL)Y゙く,211,211
    CIL PRINT ab,K,FL
    &) FO&NAI(//5x,15HPQL.2 CATVH, M=,IG,F8.0/)
    4% IF(L-LAL)79゙,79,78
    7%GIK=&K(15)*RAC
            FN=BP(1S)+BR(IS)#CDS(ALP#T-GIK)
            CO(1)=PC(1)
            CO(\hat{c})=P(C(2)*BE(NP)/BEE
            C(13)=rC(3)*HE (NP)/HEE
            CU(4)=PC(4)*P1(NP)/P1E
            CU(5)=PC(\zeta)*P2(NP)/P2E
            CO(t)=rL(b)*FF(NP)/FFE
            \nuU=0.
            00 70 I =1,0
            SU=SU+CG(1)
        7o CONTLNUE
            00 77 I=1,0
            CG(1)=CU(I)*100.1SU
        IT CDNTLNUE
            GU TC 37
        79 FW=39(15)
            40 312 I=1,6
            CO(1)=PC(I).
        312 CONTINUE
```



```
            P2ذ(K)=>う
            4 10<03
        \forallU FZ(K)=1.
i FLATHISHES
    CO3 IS=6
    1F(Fr(NF))90.90,82
        OC P1P=FFC(NPI/FF(NP)
            1F(P1P*1Uj,-2.*P(IS))410,41*2,419
    41% ト1H=2.*P(IS)*O.01
    418C=ALLG(1.-PIP)
            S=ALOG(1.-HFS(NP)/FF(NP))
            IF(L-LAL)öi,81,83
        O1 GG=G(IS)
            GL TC 8y
        0う GIK=GK(IJ)%RAC
            GG=G(Iこ)+GK(IS)*CUS(ALP*1-GIK)
        d) }L=GG-24(1j)+C+S*0.
            FF(K)=FF(NP)*EXP(Z)
            SP=rF(K)
            FF(K)=FF(K)*EXP(-FM([S))
            FL=jp-1F(K)
            L+(L-LAL) 137,212,212
    212 PRINT 133,K,FL
    133 +URMAT(//VX, lGHFLATF. CATLH, M=,Lt,F8.0/)
    137 lF(L-LAL)0y, 89,84
    64 GIK=UK(15)*RAC
        PW=BP(IS)+GR(IS)*CUS(ALP*T-GIK)
        CO(1)=FC(1)
        GO(<)=Fし(L)*3E(NP)/BEE
```

CU（3）＝F C（3）＊ $\mathrm{HE}(\mathrm{NP}) /$／HEE CO（4）$=F\left(\begin{array}{l}\text {（4）}\end{array}\right.$ PD（NP）／P1E	
CD（5）＝FC（5）＊P2（NP）／P2E	
$C D(0)=+C(0) * F F(N P) / F F E$	
$s u=0$.	
U0 $80 \quad \mathrm{I}=1,6$	
コU＝うい＋Cじ（1） óo CCNTINUE	
DC $87 \quad 1=1,0$	
（Cl 1$)=C[(1) * 100.1 S U$	
a）CCintinue 60 TJ 30	
$64 \mathrm{FW}=\mathrm{EP}(\mathrm{iS})$	
טo $313 \quad 1=1,6$	
Cu（1）＝Fこ（1） 313 CUNTINUE	
30 CALL FOCUNS K ，PW，SS，FF， $+F S(K)=S S$	$Z U C, B E C, H E C, P 1 C, P Z G, F F C, L, L A L)$
G0 TO 213	
$90 \quad f f(x)=1$ ．	
muidth end cumputaticns	
213 cunt tive	
zuj Cuirtinue $\angle C 4 \angle U P(K)=(\angle L C(K) / 20(K)) * 100 .$	
113 HEP $(K)=(H E C(K) / H E(K)) * 1 \cup 0$ ．	Computation of percent
115 P1P（K）$=(\mathrm{P} 16(\mathrm{~K}) / \mathrm{P} 1(\mathrm{~K}) 1$＊ 100.	biomass consumed
$117 \mathrm{P} 2 \mathrm{P}(\mathrm{K})=1 \mathrm{P} 2 \mathrm{C}(\mathrm{K}) / \mathrm{P}$（ (K) ）$* 106$.	
$i \neq 1+F i(K)=(r F C(K) / F F(K)) * 10 U$ ． C＊＊＊＊＊＊＊＊＊	
TRANSFEK	
$H_{i}(k)=P_{1}(k)-0.023 * P 1(k)$	Transfer of fraction of pollock 1
$\underset{C * * * * * * * * *}{F 2(k)}=P 2(k)+0.023 * P 1(k)$	to pollock 2
k	
$K(2)=$ EtP (K)	
$\begin{aligned} & \bar{K}(3)=H E P(K) \\ & K(4)=H 1 P(K) \end{aligned}$	Transfer of percent consumption into operational arrays
$K(\partial)=P 2 P(K)$ $R(0)=F F P(K)$	
$121 \mathrm{n}=\mathrm{K}+1$	Augmentation of month count
1F（K－13）23，23，165	
10J CALL PRAFLL（L，BE，BEC，BEP，2） （ALL PKIFL（1，HEOHECOHEP，3）	
CALL PKIFLO（L，P1，P1C，PPP，4）	Year end printout
CALL PRIFLU（L，P2，P2C，P2＋，5）	
Call prifld（l，fF，FFG，FFP， 6 ） 1F（1－L 1 $1100,178,190$	Start of year end iteration for
tut $1 F(L-8) 100,108,167$ $1 \in 7$ IF $(L-10) 104,169,170$	unique solution
$100 A G A=3.0$ Gu ro 17	
$\begin{gathered} 104 A G A=5.0 \\ 60 \quad 13171 \end{gathered}$	Setting of iteration constant．
$\begin{aligned} & 17 \cup \text { IF }(L-(0) \times 3,93,94 \\ & 43 \mathrm{~A} G A=0.0 \end{aligned}$	．．．
GL TO 171	

 \(44 A G A=7 . U\)
 $17 \perp L F=S E(13)-B E(1 i$
$B E I=0 E(1)-U I F / A G A$
$Q E(12)=6 t$
$D E E=\triangle E 1$
$\triangle E C(13)=0$.
UG $172 \quad \mathrm{i}=1,12$
$17255 \cdot(13)=\Delta E C(13)+B E C(I)$
BEJ=BEC(1s)/I2.
DEC $(12)=B E J$
JiF $=\mathrm{HE}(13)-\mathrm{HE}(1)$
$H E \mathcal{L}=\mathrm{HE}(\mathrm{L})-\mathrm{LF} / \mathrm{AGA}$
HE (lट) $=$ HEI
HCE $=\mathrm{HE} 1$
HEC (13) = 。
LO $\quad 173 \quad 1=1,12$
$173 \mathrm{HEC}(13)=\mathrm{HEC}(23)+\mathrm{HEC}$ (I)
HEJ=HE $(13) / 12$.
HEC (12) = HEJ
ULF $=P 1(1 s)-P 1(1)$
$P_{\perp} I=P \perp(1)-0 I F / A G A$
$P 1(1<)=P 1 I$
$P \perp E=P 1[$
$P \perp C(13)=0$.
UG $174 \quad I=1,12$
$174 P 1 C(13)=P 1 C(13)+P 1 C(1)$
FIJ=P1C(13)/12.
$P L C(1 \bar{C})=P \perp J$
UIF $=$ P2 (13)-P2(1)
$+21=F 2(1)-J I F / A G A$
$\mathrm{P} 2(12)=\mathrm{P} 21$
$P 2 E=P Z 1$
$P 2 C(13)=0$.
UG $175 \quad 1=1,12$
17う F2ご(13) = F2し(13) +P2C(I)
$r 2 J=P<C(13) / 12$.
$\mathrm{PZC}(12)=\mathrm{P} 2 \mathrm{~J}$
30= DIF $=$ FF $(1.3)-F F(1)$
FFI $=$ FF(1)-UIF/AGA
$F+(1<)=F F L$
FFE=FFI
$F F C(13)=0$.
[0 $17 \mathrm{t} \quad[=1,12$
176 FF $(13)=$ Ftu(13) +FFC(1)
FFJ=FFC(13)/12.
$F F C(1 \leq)=r+J$
ט० $177 \mathrm{l}=1,13$
$\operatorname{HES}(1)=P \perp S(I)=P 2 S(I)=\operatorname{FFS}(1)=0$.
1/7 CONTINUE
GU TJ 000
176 Lن $179 \quad \mathrm{i}=1,13$
i7y $H E J(1)=P \perp S(I)=P Z S(I) \equiv F F S(I)=0$. Zero starvation arrays
$\mathrm{B} \mathrm{L}(13)=\mathrm{HE}(13)=\mathrm{Pl}(13)=\mathrm{P} 2(13)=\mathrm{FF}(13)=0$ 。
UO $100 \quad I=1,1$?
$B E(1,3)=0 t(13)+B E(I)$
Computation of annual
$h E(13)=h t(13)+H E(I)$
mean biomass
$P i(1 s)=P(113)+P 1(I)$

.....YEAR $4 C$

Example of output

